Spreading of Quasimodes in the Bunimovich Stadium

نویسندگان

  • NICOLAS BURQ
  • ANDREW HASSELL
چکیده

We consider Dirichlet eigenfunctions uλ of the Bunimovich stadium S, satisfying (∆− λ2)uλ = 0. Write S = R ∪W where R is the central rectangle and W denotes the “wings,” i.e. the two semicircular regions. It is a topic of current interest in quantum theory to know whether eigenfunctions can concentrate in R as λ → ∞. We obtain a lower bound Cλ on the L mass of uλ in W , assuming that uλ itself is L -normalized; in other words, the L norm of uλ is controlled by λ 2 times the L norm in W . Moreover, if uλ is a o(λ ) quasimode, the same result holds, while for a o(1) quasimode we prove that L norm of uλ is controlled by λ 4 times the L norm in W . We also show that the L norm of uλ may be controlled by the integral of w|∂Nu| 2 along ∂S∩W , where w is a smooth factor on W vanishing at R∩W . These results complement recent work of Burq-Zworski which shows that the L norm of uλ is controlled by the L 2 norm in any pair of strips contained in R, but adjacent to W .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whispering Gallery Orbits in the Bunimovich Stadium

für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...

متن کامل

Symbolic Dynamics and Markov Partitions for the Stadium Billiard

We investigate the Bunimovich stadium dynamics and nd that in the limit of innnitely long stadium the symbolic dynamics is a subshift of nite type. For a stadium of nite length the Markov partitions are innnite, but the inadmissible symbol sequences can be determined exactly by means of the appropriate pruning front. We outline a construction of a sequence of nite Markov graph approximations by...

متن کامل

Scar functions in the Bunimovich Stadium billiard

In the context of the semiclassical theory of short periodic orbits, scar functions play a crucial role. These wavefunctions live in the neighbourhood of the trajectories, resembling the hyperbolic structure of the phase space in their immediate vicinity. This property makes them extremely suitable for investigating chaotic eigenfunctions. On the other hand, for all practical purposes reduction...

متن کامل

Chaotic Billiards with Focusing Components in Higher Dimensions

We give a positive answer to the long-standing question of whether or not the mechanism of defocusing can produce chaotic behavior in high-dimensional Hamilto-nian systems. We show that for a class of billiard tables Q R n ; n > 2, with focusing and at boundary components the corresponding billiards system is ergodic. This class of regions thus provides a natural generalization of the Bunimovic...

متن کامل

Numerical study of a three-dimensional generalized stadium billiard

We study a generalized three-dimensional stadium billiard and present strong numerical evidence that this system is completely chaotic. In this convex billiard chaos is generated by the defocusing mechanism. The construction of this billiard uses cylindrical components as the focusing elements and thereby differs from the recent approach pioneered by Bunimovich and Rehacek [Commun. Math. Phys. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005